Pievienot darbus Atzīmētie0
Darbs ir veiksmīgi atzīmēts!

Atzīmētie darbi

Skatītie0

Skatītie darbi

Grozs0
Darbs ir sekmīgi pievienots grozam!

Grozs

Reģistrēties

interneta bibliotēka
Atlants.lv bibliotēka

Izdevīgi: šodien akcijas cena!

Parastā cena:
4,49
Ietaupījums:
0,63 (14%)
Cena ar atlaidi*:
3,86
Pirkt
Identifikators:591063
Vērtējums:
Publicēts: 07.02.2011.
Valoda: Angļu
Līmenis: Augstskolas
Literatūras saraksts: 8 vienības
Atsauces: Ir
Laikposms: 2009.g. - 2010.g.
SatursAizvērt
Nr. Sadaļas nosaukums  Lpp.
  Introduction    3
  Decision Making: using in practice    4
  Decision trees    5
  The basics theory of decision-making under uncertainty    8
  Expected Value    9
  Quiz    10
  The Preference Axioms    13
  An Introduction to Risk-Aversion    15
  Conclusion    20
  References    21
Darba fragmentsAizvērt

The term "expected value" provides one possible answer to the question: How much is
a gamble, or any risky decision, worth? It is simply the sum of all the possible outcomes of
a gamble, multiplied by their respective probabilities.
To illustrate:
1. Say you're feeling lucky one day, so you join your office betting pool as they follow the Kentucky Derby and place $10 on Santa's Little Helper, at 25/1 odds. You know that in the unlikely event of Santa's Little Helper winning the race, you'll be richer by 10 * 25 = $250.
What this means is that, according to the bookmaker of the betting pool, Santa's Little Helper has a one in 25 chance of winning and a 24 in 25 chance of losing, or, to phrase it mathematically, the probability that Santa's Little Helper will win the race is 1/25.
So what's the expected value of your bet? Well, there are two possible outcomes - either Santa's Little Helper wins the race or he doesn't. If he wins, you get $250; otherwise, you get nothing. So the expected value of the gamble is:
(250 * 1/25) + (0 * 24/25) = 10 + 0 = $10
And $10 is exactly what you would pay to participate in the gamble.
2. Another example:
A pharmaceutical company faced with the opportunity to buy a patent on a new technology for $200 million, might know that there would be a 20% chance that it would enable them to develop a life-saving drug that might earn them, say $500 million; a 40% chance that they might earn $200 million from it; and a 40% chance
that it would turn out worthless.
The expected value of this patent would then be:
(500,000,000 * 0.2) + (200,000,000 * 0.4) + (0 * 0.4) = $180 million.…

Autora komentārsAtvērt
Parādīt vairāk līdzīgos ...

Nosūtīt darbu e-pastā

Tavs vārds:

E-pasta adrese, uz kuru nosūtīt darba saiti:

Sveiks!
{Tavs vārds} iesaka Tev apskatīties interneta bibliotēkas Atlants.lv darbu par tēmu „Decision-making under Uncertainty and Risk”.

Saite uz darbu:
https://www.atlants.lv/w/591063

Sūtīt

E-pasts ir nosūtīts.

Izvēlies autorizēšanās veidu

E-pasts + parole

E-pasts + parole

Norādīta nepareiza e-pasta adrese vai parole!
Ienākt

Aizmirsi paroli?

Draugiem.pase
Facebook
Twitter

Neesi reģistrējies?

Reģistrējies un saņem bez maksas!

Lai saņemtu bezmaksas darbus no Atlants.lv, ir nepieciešams reģistrēties. Tas ir vienkārši un aizņems vien dažas sekundes.

Ja Tu jau esi reģistrējies, vari vienkārši un varēsi saņemt bezmaksas darbus.

Atcelt Reģistrēties