Pievienot darbus Atzīmētie0
Darbs ir veiksmīgi atzīmēts!

Atzīmētie darbi

Skatītie0

Skatītie darbi

Grozs0
Darbs ir sekmīgi pievienots grozam!

Grozs

Reģistrēties

interneta bibliotēka
Atlants.lv bibliotēka

Izdevīgi: šodien akcijas cena!

Parastā cena:
2,99
Ietaupījums:
0,48 (16%)
Cena ar atlaidi*:
2,51
Pirkt
Identifikators:860956
Autors:
Vērtējums:
Publicēts: 03.01.2010.
Valoda: Latviešu
Līmenis: Vidusskolas
Literatūras saraksts: 3 vienības
Atsauces: Nav
Darba fragmentsAizvērt

Permutācijas
Par permutācijām no n elementiem sauc savienojumus, kas satur visus n elementus un atšķiras cits no cita tikai ar elementu secību. Permutāciju skaitu no n elementiem apzīmē ar Pn.
Pn = n!
Piemērs:
Cik dažādos veidos var sakārtot 6 grāmatas?
P6 = 6! = 6*5*4*3*2*1 = 720 veidos
Permutācijas ar atkārtojumie.m
Var gadīties, ka kopā ir daži k elementi vienādi, tad tas nozīmē, ka dažādo permutāciju skaits būs mazāks par tik reizēm cik ir šie vienādie k elementi. Tad lieto permutācijas ar atkārtojumiem
n!
Pn(k1,k2,…,km) = ---------------------
k1!k2!…,km ! …

Darbu komplekts:
IZDEVĪGI pirkt komplektā ietaupīsi −3,76 €
Materiālu komplekts Nr. 1119226
Parādīt vairāk līdzīgos ...

Nosūtīt darbu e-pastā

Tavs vārds:

E-pasta adrese, uz kuru nosūtīt darba saiti:

Sveiks!
{Tavs vārds} iesaka Tev apskatīties interneta bibliotēkas Atlants.lv darbu par tēmu „Kombinatorika un varbūtības teorija”.

Saite uz darbu:
https://www.atlants.lv/w/860956

Sūtīt

E-pasts ir nosūtīts.

Izvēlies autorizēšanās veidu

E-pasts + parole

E-pasts + parole

Norādīta nepareiza e-pasta adrese vai parole!
Ienākt

Aizmirsi paroli?

Draugiem.pase
Facebook
Twitter

Neesi reģistrējies?

Reģistrējies un saņem bez maksas!

Lai saņemtu bezmaksas darbus no Atlants.lv, ir nepieciešams reģistrēties. Tas ir vienkārši un aizņems vien dažas sekundes.

Ja Tu jau esi reģistrējies, vari vienkārši un varēsi saņemt bezmaksas darbus.

Atcelt Reģistrēties