Pievienot darbus Atzīmētie0
Darbs ir veiksmīgi atzīmēts!

Atzīmētie darbi

Skatītie0

Skatītie darbi

Grozs0
Darbs ir sekmīgi pievienots grozam!

Grozs

Reģistrēties

interneta bibliotēka
Atlants.lv bibliotēka

Izdevīgi: šodien akcijas cena!

Parastā cena:
6,49
Ietaupījums:
0,84 (13%)
Cena ar atlaidi*:
5,65
Pirkt
Identifikators:603078
Vērtējums:
Publicēts: 11.01.2016.
Valoda: Latviešu
Līmenis: Augstskolas
Literatūras saraksts: 3 vienības
Atsauces: Nav
SatursAizvērt
Nr. Sadaļas nosaukums  Lpp.
1.  Furjē analīze    3
2.  Ortogonālas bāzes funkcijas    4
3.  Bāzes funkcijas - harmoniskās funkcijas    4
4.  Bāzes funkcijas – Lagēra funkcijas    5
5.  Bāzes funkcijas – Wolša funkcijas    5
6.  Bāzes funkcijas - Hāra funkcijas    6
7.  Trigonometrisku funkciju Furjē rindas    6
8.  Pāreja no kontinuāla periodiska signāla Furjē rindas uz kontinuāla neperiodiska signāla Furjē transformāciju    7
9.  Amplitūdu spektrs, Fāzu spektrs    8
10.  Jaudas spektrālais blīvums, signāla enerģijas spektrālais blīvums    8
11.  Tiešā un inversā Furjē transformācija    9
12.  Furjē transformācijas īpašības. Konvolūcija    9
13.  Izmantotā literatūra    11
Darba fragmentsAizvērt

8. Pāreja no kontinuāla periodiska signāla Furjē rindas uz kontinuāla neperiodiska signāla Furjē transformāciju
Signāli, kas tiek apstrādāti, reģistrēti, pārraidīti ir neperiodiski. Tas nozīmē, ka
periodisku signālu, kā sastāvošu no harmonikām – harmoniskām svārstībām, kuru frekvences ir periodiskā signāla atkārtošanās frekvences daudzkārtņi, lielākajai daļai signālu nav tieši piemērojami. Tajā pašā laikā spektrālā pieeja – signālu attēlojums ar
harmonisku svārstību vai kompleksu eksponentfunkciju svērtu summu ir ļoti produktīva,
jo dažādas lineāras sistēmas pieņemts raksturot ar to amplitūdas frekvenču un fāzes frekvenču raksturlīknēm. Šīs raksturlīknes dod priekšstatu par to, kā sistēmā tiek pārvadītas dažādu frekvenču harmoniskas svārstības. Tāpēc, ja izdodas signālu aprakstīt kā harmonisku svārstību summu, iespējams atrast sistēmas izejas signālu veidojošo harmonisko svārstību amplitūdas un fāzes un noteikt pašu izejas signālu.
Neperiodisku signālu var aplūkot kā sastāvošu no visu frekvenču harmoniskām
svārstībām, tikai šo svārstību amplitūdas ir bezgalīgi mazas. Tādēļ to raksturošanai ieved jaunu jēdzienu – spektrālais blīvums, kas ir katras konkrētās svārstības bezgalīgi mazās kompleksās amplitūdas attiecība pret tuvāko svārstību bezgalīgi mazo frekvenču starpību. Tādējādi spektrālais blīvums ir galīga lieluma frekvences funkcija, kas parāda signālu veidojošo svārstību amplitūdu un fāzu atkarību no frekvences.
Jebkuru laikā mainīgu funkciju var apskatīt divās koordinātu telpās: laika koordinātēs un frekvenču koordinātēs. Laika koordinātes ir piemērotas funkcijas momentāno vērtību pētīšanai,
bet frekvenču koordinātes ir ērti izmantot, lai atrastu integrālos rādītājus (vidējo amplitūdu, frekvenču spektru u.c.).…

Autora komentārsAtvērt
Darbu komplekts:
IZDEVĪGI pirkt komplektā ietaupīsi −9,99 €
Materiālu komplekts Nr. 1351506
Parādīt vairāk līdzīgos ...

Nosūtīt darbu e-pastā

Tavs vārds:

E-pasta adrese, uz kuru nosūtīt darba saiti:

Sveiks!
{Tavs vārds} iesaka Tev apskatīties interneta bibliotēkas Atlants.lv darbu par tēmu „Ilgstoša laika periodisku un neperiodisku signālu Furjē rindas un Furjē transformācijas”.

Saite uz darbu:
https://www.atlants.lv/w/603078

Sūtīt

E-pasts ir nosūtīts.

Izvēlies autorizēšanās veidu

E-pasts + parole

E-pasts + parole

Norādīta nepareiza e-pasta adrese vai parole!
Ienākt

Aizmirsi paroli?

Draugiem.pase
Facebook
Twitter

Neesi reģistrējies?

Reģistrējies un saņem bez maksas!

Lai saņemtu bezmaksas darbus no Atlants.lv, ir nepieciešams reģistrēties. Tas ir vienkārši un aizņems vien dažas sekundes.

Ja Tu jau esi reģistrējies, vari vienkārši un varēsi saņemt bezmaksas darbus.

Atcelt Reģistrēties